Week 4 - Monday

COMP 4500

Last time

- What did we talk about last time?
- Non-recursive DFS
- Running time for BFS and DFS
- Determining bipartiteness
- Connectivity in directed graphs
- Started topological sorting

Questions?

Assignment 2

Formatting assignments

Assignments must be typewritten

- That means not handwritten, no matter how you digitize it
- I give some leeway for mathematical content, but things like superscripting and subscripting really matter for math
 - 10n is not the same as 10ⁿ
- I don't grade grammar or spelling explicitly, but if your sentences are too confusing to understand, it might cost you points

Tips for Word

- Assignment 1 had more mathematical notation than most assignments will, but more is still coming
- If you're typing out math with exponents, subscripts, or fractions, I highly recommend using the Equation tool on the Insert tab
 - It's not as easy to use as LaTeX (but you can actually use LaTeX commands and have them automatically converted)
- A cheat for quick math is to use Ctrl-+ for superscript and Ctrl = for subscript
- Please use · instead of * for multiplication

Tips for LaTeX

- Use \cdot for · instead of *
- Superscripts and subscripts need braces for multiple characters
 - **\$10^n\$** gives 10^n
 - \$n^100\$ gives n¹00, use \$n^{100} \$ for n¹⁰⁰
- Regular quotes and single quotes are smart quotes for the right side of a quoted expression
- Use one or two backticks (`) for smart quotes on the left:
 - "goats" is rendered as "goats"
 - ``goats'' is rendered as "goats"
- Common mathematical functions have their own commands
 - Use \log for log and \sin for sin

Logical warmup

- An epidemic has struck the Island of Knights and Knaves
 - Sick Knights always lie
 - Sick Knaves always tell the truth
 - Healthy Knights and Knaves are unchanged
- During the epidemic, a Nintendo Switch was stolen
- There are only three possible suspects: Jacob, Karl, and Louie They are good friends and know which one actually stole the Switch
- Here is part of the trial's transcript:
 - Judge (to Jacob): What do you know about the theft?
 - Jacob: The thief is a Knave
 - Judge: Is he healthy or sick?
 - **Jacob:** He is healthy
 - Judge(to Karl): What do you know about Jacob?
 - Karl: Jacob is a Knave.
 - Judge: Healthy or sick?
 - Karl: Jacob is sick.
- The judge thought a while and then asked Louie if he was the thief. Based on his yes or no answer, the judge decided who stole the Switch.
- Who was the thief?

Quiz review

Use a proof by induction to prove the following claim.

$$1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}, n \in \mathbb{Z}, n \ge 1$$

Topological Sort

Directed acyclic graph

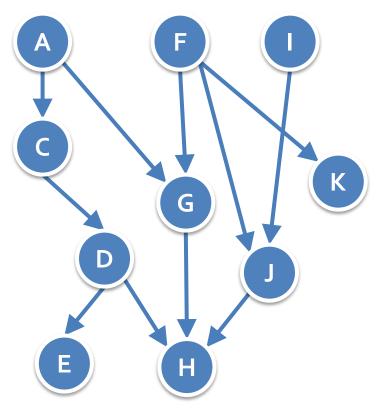
- A directed acyclic graph (DAG) is a directed graph without cycles in it
- These can be used to represent dependencies between tasks
- An edge flows from the task that must be completed first to a task that must come after
- A cycle in such a graph would mean there was a circular dependency
- By running topological sort, we discover if a directed graph has a cycle, as a side benefit

Topological sort

- A topological sort gives an ordering of the tasks such that all tasks are completed in dependency ordering
- In other words, no task is attempted before its prerequisite tasks have been done
- There are usually multiple legal topological sorts for a given DAG

Topological sort

• Give a topological sort for the following DAG:



AFICGKDJEH

Topological sort algorithm

- Create list L
- Add all nodes with no incoming edges into set S
- While S is not empty
 - Remove a node *u* from *S*
 - Add *u* to *L*
 - For each node v with an edge e from u to v
 - Remove edge *e* from the graph
 - If v has no other incoming edges, add v to S
- If the graph still has edges
 - Print "Error! Graph has a cycle"
- Otherwise
 - Return *L*

Three-Sentence Summary of Greedy Algorithms, the Interval Scheduling Problem, and Scheduling to Minimize Lateness

Greedy Algorithms

Greedy algorithms

- Greedy algorithms always take the next step that looks best locally
 - Many problems do not have this property
- Sometimes this is referred to as optimal substructure
 - An optimal solution can be built by combining optimal solutions to smaller problems
- The book proves that a greedy approach is optimal in two different ways:
 - The greedy algorithm stays ahead
 - An exchange argument

Interval scheduling

- In the interval scheduling problem, some resource (a phone, a motorcycle, a toilet) can only be used by one person at a time
- People make requests to use the resource for a specific time interval [s, f]
- The goal is to schedule as many uses as possible
- There's no preference based on who or when the resource is used

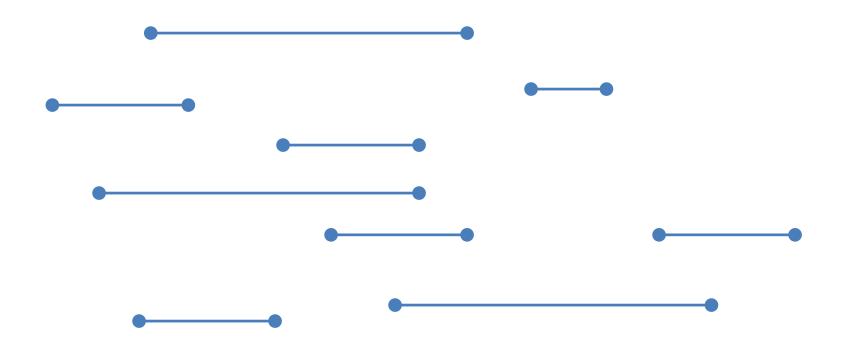
Designing the algorithm

- We (magically) know it's going to be greedy
- Which interval do we select next?
 - The one that starts earliest?
 - No.
 - The shortest?
 - Better, but still no.
 - The interval that overlaps with the fewest other intervals?
 - Still no.
- A choice that leads to an optimal algorithm is choosing the interval that **finishes** first

Interval scheduling algorithm

- Interval scheduling can be done with a greedy algorithm
- While there are still requests that are not in the compatible set
 - Find the request r that ends earliest
 - Add it to the compatible set
 - Remove all requests q that overlap with r
- Return the compatible set

Interval scheduling example



Proving optimality

- First of all, it's clear that our algorithm returns a compatible set of requests, let's call it A
- Imagine some optimal solution O
- If we can show that |A| = |O|, we are done
- We want to show that our algorithm stays ahead of (does no worse than) the algorithm that builds O
- Let i_1, i_2, \dots, i_k be the requests in A, in the order added
- Let $\vec{j_1}, \vec{j_2}, ..., \vec{j_m}$ be the requests in O, in left to right order
- For any request r, let s(r) be its starting time and f(r) be its finishing time

For all indices $r \le k$, $f(i_r) \le f(j_r)$

- Proof by induction:
 - Basis case: r = 1
 - Our algorithm starts with i_1 being the request with the smallest finishing time. j_1 cannot have a smaller one.
 - Induction step: Assume $f(i_r) \le f(j_r)$ for $r = x_r$, where $x \ge 1$
 - Consider $f(i_{x+1})$. Because intervals in O are ordered left to right, $f(j_x) \le s(j_{x+1})$. By the induction hypothesis, $f(i_x) \le f(j_x)$. Thus, $f(i_x) \le s(j_{x+1})$. Since we always select a request with the smallest finish time, and j_{x+1} is a legal request to select, it must be the case that $f(i_{x+1}) \le f(j_{x+1})$.

The greedy algorithm returns an optimal set A

Proof by contradiction:

• Suppose that **A** is not optimal. Then, **O** must have more requests. In other words, m > k. By the proof on the prior slide, $f(i_k) \le f(j_k)$. Since m > k, there is at least one request j_{k+1} in **O**. To be legal, j_{k+1} starts after j_k ends, and thus also after i_k ends. If we remove all of the requests that are not compatible with i_1 , i_2 , ..., i_k , j_{k+1} must still be available. But our greedy algorithm stopped with requests left to consider: contradiction.

Running time

- First, we sort the *n* requests in order of finishing time
 - The best comparison-based sort takes O(n log n)
- We scan through the *n* sorted requests again and make an array *S* of length *n* such that *S*[*i*] contains the starting value of *i*, *s*(*i*)
 - O(*n*) time
- Our algorithm selects the first interval in our list sorted on finishing time. We then move through array S until we find the first interval j such that s(j) ≥ the finishing time selected. We add it. We continue the process until we have moved through the entire array S.
 - O(*n*) time
- Total time: O(n log n)

Scheduling all intervals

- What if all intervals need to be scheduled?
 - Example: Lectures are intervals and resources are classrooms
 - Example: Roasting pigs are intervals and resources are fire pits
- The problem is to find the minimum number of resources needed to satisfy all intervals
- The book calls this problem interval partitioning

Interval partitioning: visualization

- Intervals to schedule (arranged unhelpfully):
- Intervals to schedule (arranged helpfully):
- The depth d of a set of intervals is the maximum number that pass a single point on the time-line

Interval partitioning algorithm

- Sort intervals by their start times
- Let I₁, I₂, ..., I_n be the ordered intervals
- For *j* = 1, 2, 3, ..., *n*
 - For each interval I_i that precedes I_i in sorted order and overlaps it
 - Exclude the label of *I_i* from consideration for *I_i*
 - If there is any label from {1, 2, ..., d} that has not been excluded
 - Assign that label to I_j
 - Else
 - Leave *I_j* unlabeled

Interval partitioning correctness

- Claim: In our algorithm, every interval will be assigned a label, and no two overlapping intervals will receive the same label.
- Proof: Consider interval *I_j*, and suppose there are *t* intervals earlier in the sorted order that overlap it. These *t* intervals with *I_j* form *t* + 1 intervals that pass over a common point on the time-line. Thus, *t* + 1 ≤ *d* and *t* ≤ *d* − 1. Thus, there must be at least one label left to be assigned to *I_j*.

Proof continued

To show that no two overlapping intervals are assigned the same label, consider two intervals *I* and *I'* that overlap.
Suppose that *I* precedes *I'* in the sorted order. When *I'* is considered by the algorithm, *I* is in the set of intervals whose labels are excluded.

Upcoming

Next time...

- Finish interval partitioning
- Scheduling to minimize lateness
- Shortest path
- Minimum spanning tree

Reminders

- Work on Assignment 2
 - Due Friday before midnight
- Read sections 4.4 and 4.5
- Exam 1 is next Monday
 - Review will be on Friday