
Week 4 - Monday



 What did we talk about last time?
 Non-recursive DFS
 Running time for BFS and DFS
 Determining bipartiteness
 Connectivity in directed graphs
 Started topological sorting







 Assignments must be typewritten
 That means not handwritten, no matter how you digitize it

 I give some leeway for mathematical content, but things like 
superscripting and subscripting really matter for math
 10n is not the same as 10n

 I don't grade grammar or spelling explicitly, but if your 
sentences are too confusing to understand, it might cost you 
points



 Assignment 1 had more mathematical notation than most 
assignments will, but more is still coming

 If you're typing out math with exponents, subscripts, or 
fractions, I highly recommend using the Equation tool on the 
Insert tab
 It's not as easy to use as LaTeX (but you can actually use LaTeX 

commands and have them automatically converted)
 A cheat for quick math is to use Ctrl-+ for superscript and Ctrl-

= for subscript
 Please use � instead of * for multiplication



 Use \cdot for � instead of *
 Superscripts and subscripts need braces for multiple characters
 $10^n$ gives 10𝑛𝑛
 $n^100$ gives 𝑛𝑛100, use $n^{100}$ for 𝑛𝑛100

 Regular quotes and single quotes are smart quotes for the right 
side of a quoted expression

 Use one or two backticks (`) for smart quotes on the left:
 "goats" is rendered as ”goats”
 ``goats'' is rendered as “goats”

 Common mathematical functions have their own commands
 Use \log for log and \sin for sin



 An epidemic has struck the Island of Knights and Knaves
 Sick Knights always lie
 Sick Knaves always tell the truth
 Healthy Knights and Knaves are unchanged

 During the epidemic, a Nintendo Switch was stolen
 There are only three possible suspects: Jacob, Karl, and Louie
 They are good friends and know which one actually stole the Switch
 Here is part of the trial's transcript:

 Judge (to Jacob): What do you know about the theft?
 Jacob: The thief is a Knave
 Judge: Is he healthy or sick?
 Jacob: He is healthy
 Judge( to Karl): What do you know about Jacob?
 Karl: Jacob is a Knave.
 Judge: Healthy or sick?
 Karl: Jacob is sick.

 The judge thought a while and then asked Louie if he was the thief.  Based on his yes or no answer, the judge 
decided who stole the Switch.

 Who was the thief?



 Use a proof by induction to prove the following claim.

12 + 22 + ⋯+ 𝑛𝑛2 =
𝑛𝑛 𝑛𝑛 + 1 2𝑛𝑛 + 1

6
,𝑛𝑛 ∈ ℤ,𝑛𝑛 ≥ 1





 A directed acyclic graph (DAG) is a directed graph without 
cycles in it

 These can be used to represent dependencies between tasks
 An edge flows from the task that must be completed first to a 

task that must come after
 A cycle in such a graph would mean there was a circular 

dependency
 By running topological sort, we discover if a directed graph 

has a cycle, as a side benefit



 A topological sort gives an ordering of the tasks such that all 
tasks are completed in dependency ordering

 In other words, no task is attempted before its prerequisite 
tasks have been done

 There are usually multiple legal topological sorts for a given 
DAG



 Give a topological sort for the following DAG:

 A F I C G K D J E H

A

HE

JD

K
G

C

F I



 Create list L
 Add all nodes with no incoming edges into set S
 While S is not empty
 Remove a node u from S
 Add u to L
 For each node v with an edge e from u to v
▪ Remove edge e from the graph
▪ If v has no other incoming edges, add v to S

 If the graph still has edges
 Print "Error!  Graph has a cycle"

 Otherwise
 Return L







 Greedy algorithms always take the next step that looks best 
locally
 Many problems do not have this property

 Sometimes this is referred to as optimal substructure
 An optimal solution can be built by combining optimal solutions to 

smaller problems
 The book proves that a greedy approach is optimal in two 

different ways:
 The greedy algorithm stays ahead
 An exchange argument



 In the interval scheduling problem, some resource (a phone, a 
motorcycle, a toilet) can only be used by one person at a time

 People make requests to use the resource for a specific time 
interval [s, f]

 The goal is to schedule as many uses as possible
 There's no preference based on who or when the resource is 

used



 We (magically) know it's going to be greedy
 Which interval do we select next?
 The one that starts earliest?
▪ No.

 The shortest?
▪ Better, but still no.

 The interval that overlaps with the fewest other intervals?
▪ Still no.

 A choice that leads to an optimal algorithm is choosing the 
interval that finishes first



 Interval scheduling can be done with a greedy algorithm
 While there are still requests that are not in the compatible set
 Find the request r that ends earliest
 Add it to the compatible set
 Remove all requests q that overlap with r

 Return the compatible set





 First of all, it's clear that our algorithm returns a compatible set of 
requests, let's call it A

 Imagine some optimal solution O
 If we can show that |A| = |O|, we are done
 We want to show that our algorithm stays ahead of (does no 

worse than) the algorithm that builds O
 Let i1, i2, … , ik be the requests in A, in the order added
 Let j1, j2, …, jm be the requests in O, in left to right order
 For any request r, let s(r) be its starting time and f(r) be its 

finishing time



 Proof by induction:
 Basis case: r = 1
▪ Our algorithm starts with i1 being the request with the smallest finishing time.  

j1 cannot have a smaller one.

 Induction step: Assume f(ir) ≤ f(jr) for r = x, where x ≥ 1
▪ Consider f(ix+1).  Because intervals in O are ordered left to right, f(jx) ≤ s(jx+1). 

By the induction hypothesis, f(ix) ≤ f(jx).  Thus, f(ix) ≤ s(jx+1). Since we always 
select a request with the smallest finish time, and jx+1 is a legal request to 
select, it must be the case that f(ix+1) ≤ f(jx+1). ∎



 Proof by contradiction:
 Suppose that A is not optimal.  Then, O must have more requests.  In 

other words, m > k. By the proof on the prior slide, f(ik) ≤ f(jk). Since 
m > k, there is at least one request jk+1 in O.  To be legal, jk+1 starts 
after jk ends, and thus also after ik ends.  If we remove all of the 
requests that are not compatible with i1, i2, … ik, jk+1 must still be 
available.  But our greedy algorithm stopped with request ik, when 
it's supposed to stop when there are no more requests left to 
consider: contradiction.



 First, we sort the n requests in order of finishing time
 The best comparison-based sort takes O(n log n)

 We scan through the n sorted requests again and make an array S
of length n such that S[i] contains the starting value of i, s(i)
 O(n) time

 Our algorithm selects the first interval in our list sorted on 
finishing time.  We then move through array S until we find the 
first interval j such that s(j) ≥ the finishing time selected.  We add 
it.  We continue the process until we have moved through the 
entire array S.
 O(n) time

 Total time: O(n log n)



 What if all intervals need to be scheduled?
 Example: Lectures are intervals and resources are classrooms
 Example: Roasting pigs are intervals and resources are fire pits

 The problem is to find the minimum number  of resources 
needed to satisfy all intervals

 The book calls this problem interval partitioning



 Intervals to schedule (arranged unhelpfully):

 Intervals to schedule (arranged helpfully):

 The depth d of a set of intervals is the maximum number that pass 
a single point on the time-line



 Sort intervals by their start times
 Let I1, I2, …, In be the ordered intervals
 For j = 1, 2, 3, ..., n
 For each interval Ii that precedes Ij in sorted order and overlaps it
▪ Exclude the label of Ii from consideration for Ij

 If there is any label from {1, 2, …, d} that has not been excluded
▪ Assign that label to Ij

 Else
▪ Leave Ij unlabeled



 Claim: In our algorithm, every interval will be assigned a label, 
and no two overlapping intervals will receive the same label.

 Proof: Consider interval Ij, and suppose there are t intervals 
earlier in the sorted order that overlap it. These t intervals 
with Ij form t + 1 intervals that pass over a common point on 
the time-line.  Thus, t + 1 ≤ d and t ≤ d – 1.  Thus, there must be 
at least one label left to be assigned to Ij.



 To show that no two overlapping intervals are assigned the 
same label, consider two intervals I and I' that overlap.  
Suppose that I precedes I' in the sorted order.  When I' is 
considered by the algorithm, I is in the set of intervals whose 
labels are excluded. ∎





 Finish interval partitioning
 Scheduling to minimize lateness
 Shortest path
 Minimum spanning tree



 Work on Assignment 2
 Due Friday before midnight

 Read sections 4.4 and 4.5
 Exam 1 is next Monday
 Review will be on Friday
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