
Week 4 - Monday

 What did we talk about last time?
 Non-recursive DFS
 Running time for BFS and DFS
 Determining bipartiteness
 Connectivity in directed graphs
 Started topological sorting

 Assignments must be typewritten
 That means not handwritten, no matter how you digitize it

 I give some leeway for mathematical content, but things like
superscripting and subscripting really matter for math
 10n is not the same as 10n

 I don't grade grammar or spelling explicitly, but if your
sentences are too confusing to understand, it might cost you
points

 Assignment 1 had more mathematical notation than most
assignments will, but more is still coming

 If you're typing out math with exponents, subscripts, or
fractions, I highly recommend using the Equation tool on the
Insert tab
 It's not as easy to use as LaTeX (but you can actually use LaTeX

commands and have them automatically converted)
 A cheat for quick math is to use Ctrl-+ for superscript and Ctrl-

= for subscript
 Please use � instead of * for multiplication

 Use \cdot for � instead of *
 Superscripts and subscripts need braces for multiple characters
 10^n gives 10𝑛𝑛
 n^100 gives 𝑛𝑛100, use n^{100} for 𝑛𝑛100

 Regular quotes and single quotes are smart quotes for the right
side of a quoted expression

 Use one or two backticks (`) for smart quotes on the left:
 "goats" is rendered as ”goats”
 ``goats'' is rendered as “goats”

 Common mathematical functions have their own commands
 Use \log for log and \sin for sin

 An epidemic has struck the Island of Knights and Knaves
 Sick Knights always lie
 Sick Knaves always tell the truth
 Healthy Knights and Knaves are unchanged

 During the epidemic, a Nintendo Switch was stolen
 There are only three possible suspects: Jacob, Karl, and Louie
 They are good friends and know which one actually stole the Switch
 Here is part of the trial's transcript:

 Judge (to Jacob): What do you know about the theft?
 Jacob: The thief is a Knave
 Judge: Is he healthy or sick?
 Jacob: He is healthy
 Judge(to Karl): What do you know about Jacob?
 Karl: Jacob is a Knave.
 Judge: Healthy or sick?
 Karl: Jacob is sick.

 The judge thought a while and then asked Louie if he was the thief. Based on his yes or no answer, the judge
decided who stole the Switch.

 Who was the thief?

 Use a proof by induction to prove the following claim.

12 + 22 + ⋯+ 𝑛𝑛2 =
𝑛𝑛 𝑛𝑛 + 1 2𝑛𝑛 + 1

6
,𝑛𝑛 ∈ ℤ,𝑛𝑛 ≥ 1

 A directed acyclic graph (DAG) is a directed graph without
cycles in it

 These can be used to represent dependencies between tasks
 An edge flows from the task that must be completed first to a

task that must come after
 A cycle in such a graph would mean there was a circular

dependency
 By running topological sort, we discover if a directed graph

has a cycle, as a side benefit

 A topological sort gives an ordering of the tasks such that all
tasks are completed in dependency ordering

 In other words, no task is attempted before its prerequisite
tasks have been done

 There are usually multiple legal topological sorts for a given
DAG

 Give a topological sort for the following DAG:

 A F I C G K D J E H

A

HE

JD

K
G

C

F I

 Create list L
 Add all nodes with no incoming edges into set S
 While S is not empty
 Remove a node u from S
 Add u to L
 For each node v with an edge e from u to v
▪ Remove edge e from the graph
▪ If v has no other incoming edges, add v to S

 If the graph still has edges
 Print "Error! Graph has a cycle"

 Otherwise
 Return L

 Greedy algorithms always take the next step that looks best
locally
 Many problems do not have this property

 Sometimes this is referred to as optimal substructure
 An optimal solution can be built by combining optimal solutions to

smaller problems
 The book proves that a greedy approach is optimal in two

different ways:
 The greedy algorithm stays ahead
 An exchange argument

 In the interval scheduling problem, some resource (a phone, a
motorcycle, a toilet) can only be used by one person at a time

 People make requests to use the resource for a specific time
interval [s, f]

 The goal is to schedule as many uses as possible
 There's no preference based on who or when the resource is

used

 We (magically) know it's going to be greedy
 Which interval do we select next?
 The one that starts earliest?
▪ No.

 The shortest?
▪ Better, but still no.

 The interval that overlaps with the fewest other intervals?
▪ Still no.

 A choice that leads to an optimal algorithm is choosing the
interval that finishes first

 Interval scheduling can be done with a greedy algorithm
 While there are still requests that are not in the compatible set
 Find the request r that ends earliest
 Add it to the compatible set
 Remove all requests q that overlap with r

 Return the compatible set

 First of all, it's clear that our algorithm returns a compatible set of
requests, let's call it A

 Imagine some optimal solution O
 If we can show that |A| = |O|, we are done
 We want to show that our algorithm stays ahead of (does no

worse than) the algorithm that builds O
 Let i1, i2, … , ik be the requests in A, in the order added
 Let j1, j2, …, jm be the requests in O, in left to right order
 For any request r, let s(r) be its starting time and f(r) be its

finishing time

 Proof by induction:
 Basis case: r = 1
▪ Our algorithm starts with i1 being the request with the smallest finishing time.

j1 cannot have a smaller one.

 Induction step: Assume f(ir) ≤ f(jr) for r = x, where x ≥ 1
▪ Consider f(ix+1). Because intervals in O are ordered left to right, f(jx) ≤ s(jx+1).

By the induction hypothesis, f(ix) ≤ f(jx). Thus, f(ix) ≤ s(jx+1). Since we always
select a request with the smallest finish time, and jx+1 is a legal request to
select, it must be the case that f(ix+1) ≤ f(jx+1). ∎

 Proof by contradiction:
 Suppose that A is not optimal. Then, O must have more requests. In

other words, m > k. By the proof on the prior slide, f(ik) ≤ f(jk). Since
m > k, there is at least one request jk+1 in O. To be legal, jk+1 starts
after jk ends, and thus also after ik ends. If we remove all of the
requests that are not compatible with i1, i2, … ik, jk+1 must still be
available. But our greedy algorithm stopped with request ik, when
it's supposed to stop when there are no more requests left to
consider: contradiction.

 First, we sort the n requests in order of finishing time
 The best comparison-based sort takes O(n log n)

 We scan through the n sorted requests again and make an array S
of length n such that S[i] contains the starting value of i, s(i)
 O(n) time

 Our algorithm selects the first interval in our list sorted on
finishing time. We then move through array S until we find the
first interval j such that s(j) ≥ the finishing time selected. We add
it. We continue the process until we have moved through the
entire array S.
 O(n) time

 Total time: O(n log n)

 What if all intervals need to be scheduled?
 Example: Lectures are intervals and resources are classrooms
 Example: Roasting pigs are intervals and resources are fire pits

 The problem is to find the minimum number of resources
needed to satisfy all intervals

 The book calls this problem interval partitioning

 Intervals to schedule (arranged unhelpfully):

 Intervals to schedule (arranged helpfully):

 The depth d of a set of intervals is the maximum number that pass
a single point on the time-line

 Sort intervals by their start times
 Let I1, I2, …, In be the ordered intervals
 For j = 1, 2, 3, ..., n
 For each interval Ii that precedes Ij in sorted order and overlaps it
▪ Exclude the label of Ii from consideration for Ij

 If there is any label from {1, 2, …, d} that has not been excluded
▪ Assign that label to Ij

 Else
▪ Leave Ij unlabeled

 Claim: In our algorithm, every interval will be assigned a label,
and no two overlapping intervals will receive the same label.

 Proof: Consider interval Ij, and suppose there are t intervals
earlier in the sorted order that overlap it. These t intervals
with Ij form t + 1 intervals that pass over a common point on
the time-line. Thus, t + 1 ≤ d and t ≤ d – 1. Thus, there must be
at least one label left to be assigned to Ij.

 To show that no two overlapping intervals are assigned the
same label, consider two intervals I and I' that overlap.
Suppose that I precedes I' in the sorted order. When I' is
considered by the algorithm, I is in the set of intervals whose
labels are excluded. ∎

 Finish interval partitioning
 Scheduling to minimize lateness
 Shortest path
 Minimum spanning tree

 Work on Assignment 2
 Due Friday before midnight

 Read sections 4.4 and 4.5
 Exam 1 is next Monday
 Review will be on Friday

	COMP 4500
	Last time
	Questions?
	Assignment 2
	Formatting assignments
	Tips for Word
	Tips for LaTeX
	Logical warmup
	Quiz review
	Topological Sort
	Directed acyclic graph
	Topological sort
	Topological sort
	Topological sort algorithm
	Three-Sentence Summary of Greedy Algorithms, the Interval Scheduling Problem, and Scheduling to Minimize Lateness
	Greedy Algorithms
	Greedy algorithms
	Interval scheduling
	Designing the algorithm
	Interval scheduling algorithm
	Interval scheduling example
	Proving optimality
	For all indices r ≤ k, f(ir) ≤ f(jr)
	The greedy algorithm returns an optimal set A
	Running time
	Scheduling all intervals
	Interval partitioning: visualization
	Interval partitioning algorithm
	Interval partitioning correctness
	Proof continued
	Upcoming
	Next time…
	Reminders

